No image available for this title

Text

Analisis Perbandingan Metode Harmonic Mean dan Local Mean Vector Dalam Penyeleksian Tetangga Pada Algoritma KNN



Algoritma K Nearest Neighbour (KNN) merupakan salah satu algoritma klasifikasi yang telah digunakan pada banyak penelitian, namun KNN memiliki beberapa kekurangan diantaranya adalah pada pemilihan jumlah tetangga terdekat. Jika jumlah tetangga terdekat terlalu kecil maka akan sensitif terhadap derau (noise) dan jika jumlah tetangga terdekat terlalu besar kemungkinan ada tetangga outlier dari kelas lain. Majority Voting juga merupakan metode yang sederhana dan ini bisa jadi masalah jika jarak bervariasi. Salah satu solusi untuk masalah outlier adalah menggunakan Local Mean Vector dengan menambahkan Harmonic Mean untuk membantunya. Penelitian ini bertujuan untuk mengetahui perbandingan kinerja teknik penyeleksian tetangga terakhir yang didapatkan menggunakan Local Mean Vector dan Harmonic Mean. Dari Hasil dari penelitian ini menunjukkan bahwa teknik penyeleksian tetanggal berbasis Local Mean Vector dan Harmonic Mean memberikan akurasi lebih baik yaitu sebesar 0,78 dibandingkan dengan teknik Majority Voting dengan akurasi sebesar 0.75.


Availability

No copy data


Detail Information

Series Title
-
Call Number
-
Publisher Jurnal Sains dan Informatika : Indonesia.,
Collation
006.3
Language
Indonesia
ISBN/ISSN
2598-5841
Classification
NONE
Content Type
-
Media Type
-
Carrier Type
-
Edition
-
Subject(s)
Specific Detail Info
-
Statement of Responsibility

Other Information

Accreditation
-

Other version/related

No other version available


File Attachment



Information


Web Online Public Access Catalog - Use the search options to find documents quickly