No image available for this title

Text

Pengaruh Komposisi Split Data Terhadap Performa Klasifikasi Penyakit Kanker Payudara Menggunakan Algoritma Machine Learning



Hasil klasifikasi kanker payudara yang tidak tepat dan memiliki akurasi rendah berpotensi membahayakan nyawa pasien. Rasio split data training dan testing mempengaruhi akurasi klasifikasi. Pemilihan rasio split data yang tidak tepat dapat menurunkan akurasi model. Penelitian ini bertujuan menemukan komposisi data terbaik untuk hasil klasifikasi kanker payudara yang baik. Metode yang digunakan adalah holdout dan k-fold cross validation. Algoritma klasifikasi yang dibandingkan adalah SVM, Random Forest, dan Naïve Bayes. Hasil penelitian menunjukkan performa akurasi yang berbeda pada ketiga algoritma tergantung pada metode validasi. Skema holdout validation dengan rasio 75%:25% menghasilkan akurasi terbaik untuk SVM, yaitu 98.89%. Algoritma Random Forest mencapai akurasi terbaik pada rasio split data 55%:45%, yaitu 95.85%. Namun, Naïve Bayes memiliki performa akurasi yang lebih baik saat menggunakan k-fold cross validation dengan akurasi 93.85%. Metode holdout dengan rasio 75:25 terbukti menghasilkan akurasi terbaik untuk klasifikasi data kanker payudara menggunakan SVM. Penelitian selanjutnya dapat menggunakan algoritma deep learning dan memperluas penelitian ke jenis kanker lainnya untuk meningkatkan hasil klasifikasi.


Availability

No copy data


Detail Information

Series Title
-
Call Number
-
Publisher Jurnal Sains dan Informatika : Indonesia.,
Collation
006.3
Language
Indonesia
ISBN/ISSN
2598-5841
Classification
NONE
Content Type
-
Media Type
-
Carrier Type
-
Edition
-
Subject(s)
Specific Detail Info
-
Statement of Responsibility

Other Information

Accreditation
-

Other version/related

No other version available


File Attachment



Information


Web Online Public Access Catalog - Use the search options to find documents quickly