No image available for this title

Text

Penerapan Learning Vector Quantization Dalam Memprediksi Jumlah Rumah Tangga Miskin



Kemiskinan merupakan salah satu permasalahan penting yang masih terus dilakukan pengkajiannya oleh pemerintah daerah termasuk pemerintah Kabupaten Cirebon, berbagai upaya pemberian bantuan telah dilakukan, namun sayangnya masih ada beberapa rumah tangga miskin yang belum dapat keluar dari kemiskinan tersebut. Penelitian ini bertujuan untuk memprediksi rumah tangga miskin yang telah mendapatkan bantuan, apakah dapat keluar dari kemiskinannya ataukah tetap pada kelompok desil 1 (rumah tangga sangat miskin), desil 2 (rumah tangga miskin), desil 3 (rumah tangga hampir miskin) melalui algoritma LVQ. Algoritma LVQ merupakan salah satu algoritma klasifikasi yang mampu mengenali dan meniru input output yang telah ditentukan. Penelitian ini menggunakan 70 data set, 10 neuron inputan, 3 neuron keluaran, 100 MaxEpoh dan 0,05 learning rate () dalam melakukan prediksi. Dari 70 data set yang digunakan selanjutnya akan dipecah menjadi data training dan data testing. Berdasarkan 5 hasil pengujian yang telah dilakukan, didapatkan bahwa tingkat akurasi dan error rate akan berbanding lurus terhadap jumlah data training dan data testing yang ditentukan.


Availability

No copy data


Detail Information

Series Title
-
Call Number
-
Publisher Jurnal Sains dan Informatika : Indonesia.,
Collation
006.3
Language
Indonesia
ISBN/ISSN
2598-5841
Classification
NONE
Content Type
-
Media Type
-
Carrier Type
-
Edition
-
Subject(s)
Specific Detail Info
-
Statement of Responsibility

Other Information

Accreditation
-

Other version/related

No other version available


File Attachment



Information


Web Online Public Access Catalog - Use the search options to find documents quickly