Record Detail
Advanced Search
Text
Deep Learning on Game Addiction Detection Based on Electroencephalogram
Playing games for too long can be addictive. Based on a recent study by Brand et al, adolescents are considered more vulnerable than adults to game addiction. The activity of playing games produces a wave in the brain, namely beta waves where the person is in a focused state. Brain wave activity can be measured and captured using an Electroencephalogram (EEG). Recording brain wave activity naturally requires a prominent and constant brain activity such as when concentrating while playing a game. This study aims to detect game addiction in late adolescence by applying Convolutional Neural Network (CNN). Recording of brain waves was carried out three times for each respondent with a stimulus to play three different games, namely games included in the easy, medium, and hard categories with a consecutive taking time of 10 minutes, 15 minutes, and 30 minutes. Data acquisition results are feature extraction using Fast Fourier Transform to get the average signal for each respondent. Based on the research conducted, obtained an accuracy of 86% with a loss of 0.2771 where the smaller the loss value, the better the CNN model built. The test results on the model produce an overall accuracy of 88% with misclassification in 1 data. The CNN model built is good enough for the detection of game addiction in late adolescence.
Availability
No copy data
Detail Information
Series Title |
-
|
---|---|
Call Number |
-
|
Publisher | JURNAL MEDIA INFORMATIKA BUDIDARMA : Indonesia., 2021 |
Collation |
006
|
Language |
Indonesia
|
ISBN/ISSN |
2614-5278
|
Classification |
NONE
|
Content Type |
-
|
Media Type |
-
|
---|---|
Carrier Type |
-
|
Edition |
-
|
Subject(s) | |
Specific Detail Info |
-
|
Statement of Responsibility |
-
|
Other Information
Accreditation |
-
|
---|
Other version/related
No other version available
File Attachment
Information
Web Online Public Access Catalog - Use the search options to find documents quickly