Record Detail
Advanced Search
Text
The Application of Fully Homomorphic Encryption on XGBoost Based Multiclass Classification
Fully Homomorphic Encryption (FHE) is a ground breaking cryptographic technique that allows computations to be performed directly on encrypted data, preserving privacy and security. This paper explores the application of Fully Homomorphic Encryption on Extreme Gradient Boosting (XGBoost) multiclass classification, demonstrating its potential to enable secure and privacy-preserving machine learning. The paper presents a framework for training and evaluating XGBoost models using encrypted data, leveraging FHE operations for encrypted feature engineering, model training, and inference. The experimental results showcase the feasibility of applying Fully Homomorphic Encryption to XGBoost-based multiclass classification tasks while maintaining data confidentiality. The findings highlight the trade-off between computation complexity and model accuracy in FHE-based approaches and provide insights into the challenges and future directions of utilizing Fully Homomorphic Encryption in practical machine learning scenarios. The study underscores the significance of privacypreserving machine learning techniques and paves the way for secure data analysis in sensitive domains where data privacy is of utmost importance.
Availability
No copy data
Detail Information
Series Title |
-
|
---|---|
Call Number |
-
|
Publisher | Journal Information Engineering and Educational Technology : Indonesia., 2023 |
Collation |
-
|
Language |
English
|
ISBN/ISSN |
2549-869X
|
Classification |
NONE
|
Content Type |
-
|
Media Type |
-
|
---|---|
Carrier Type |
-
|
Edition |
-
|
Subject(s) | |
Specific Detail Info |
-
|
Statement of Responsibility |
-
|
Other Information
Accreditation |
-
|
---|
Other version/related
No other version available
File Attachment
Information
Web Online Public Access Catalog - Use the search options to find documents quickly