Image of A Predictive Analysis of Chronic Kidney Disease by Exploring Important Features

Text

A Predictive Analysis of Chronic Kidney Disease by Exploring Important Features



Chronic Kidney Disease is an incurable disease which causes damages to the functions of a kidney gradually. Only proper treatment can prevent the disease from getting worse. Because of proper knowledge about kidney disorders, people had to suffer from this deadly disease. Thus, in this paper, we analyzed certain key features and noticed several interesting relationships with the disease by considering the actual perception of people. We also predict kidney disease by employing various machine learning algorithms including Logistic Regression, Naive Bayes, SVM and KNN. By applying PCA, we observe that there is an improvement in the accuracy for predicting the disease. SVM outperforms other algorithms with 98% accuracy in predicting chronic kidney disease. In future, we will try to find some significant hypothesis that helps us to prevent the disease better.


Availability

No copy data


Detail Information

Series Title
-
Call Number
-
Publisher International Journal of Computing and Digital Systems : Bahrain.,
Collation
006
Language
English
ISBN/ISSN
2210-142X
Classification
NONE
Content Type
-
Media Type
-
Carrier Type
-
Edition
-
Subject(s)
Specific Detail Info
-
Statement of Responsibility

Other Information

Accreditation
Scopus Q3

Other version/related

No other version available


File Attachment



Information


Web Online Public Access Catalog - Use the search options to find documents quickly