Image of Deep Learning-Based Object Recognition in Video Sequences

Text

Deep Learning-Based Object Recognition in Video Sequences



Deep Learning-Based Object Recognition in Video SequencesThis paper proposes to detect, recognize, and track a specific object in video sequences using Convolutional Neural Networks (CNNs). The CNNs used are the TensorFlow SSD model and Inception model, with a use case of airplane detection as a test subject, although it can be widely extensible to any class of objects as per the application. For the SSD model, images of planes were downloaded and annotated using bounding boxes to identify regions of interest. Training and test sets were split, after which TensorFlow specific records were generated. Whereas, for the Inception model, the last layer of the Neural Network was trained with multiple images of airplanes and random images to obtain a classifier for identify planes vs. no planes. The SSD model was accurate, generating crisp bounding boxes with a relatively high accuracy. The Inception model had a higher accuracy than the SSD model in terms of false positives and false negatives. But it does not display bounding boxes as the model is not meant to find the region of interest. The GPU outperformed the CPU in training and testing by a wide margin. The Inception model is suitable to extract frames in which a specific object is present if the position of the object is not of importance. The SSD model is suitable if the specific object needs to be detected with its position in a video frame.


Availability

No copy data


Detail Information

Series Title
-
Call Number
-
Publisher International Journal of Computing and Digital Systems : Bahrain.,
Collation
006
Language
English
ISBN/ISSN
2210-142X
Classification
NONE
Content Type
-
Media Type
-
Carrier Type
-
Edition
-
Subject(s)
Specific Detail Info
-
Statement of Responsibility

Other Information

Accreditation
Scopus Q3

Other version/related

No other version available


File Attachment



Information


Web Online Public Access Catalog - Use the search options to find documents quickly