Image of Hybrid FAST-SIFT-CNN (HFSC) Approach for Vision-Based Indian Sign Language Recognition

Text

Hybrid FAST-SIFT-CNN (HFSC) Approach for Vision-Based Indian Sign Language Recognition



Indian Sign Language (ISL) is the conventional means of communication for the deaf-mute community in the Indian subcontinent. Accurate feature extraction is one of the prime challenges in automatic gesture recognition of ISL gestures. In this paper, a hybrid approach, namely HFSC, integrating FAST and SIFT with CNN has been proposed for automatic and accurate recognition of ISL’s static and single-hand gestures. Features from accelerated segment test (FAST) and scale-invariant feature transform (SIFT) provides the basic framework for feature extraction while CNN is used for classification. The performance of HFSC is compared with existing sign language recognition approaches by testing on standard benchmark (MNIST, Jochen-Trisech, and NUS hand postureII datasets. The HFSC algorithm’s efficiency has been shown by comparing it with CNN and SIFT CNN for a uniform dataset with an accuracy of 97.89%. Furthermore, the Computational results of the HFSC on complex background dataset achieve comparable accuracy of 95%.


Availability

No copy data


Detail Information

Series Title
-
Call Number
-
Publisher International Journal of Computing and Digital Systems : Bahrain.,
Collation
006
Language
English
ISBN/ISSN
2210-142X
Classification
NONE
Content Type
-
Media Type
-
Carrier Type
-
Edition
-
Subject(s)
Specific Detail Info
-
Statement of Responsibility

Other Information

Accreditation
Scopus Q3

Other version/related

No other version available


File Attachment



Information


Web Online Public Access Catalog - Use the search options to find documents quickly