Image of Overview of CapsNet Performance Evaluation Methods for Image Classification using a Dual Input Capsule Network as a Case Study

Text

Overview of CapsNet Performance Evaluation Methods for Image Classification using a Dual Input Capsule Network as a Case Study



Performance evaluation is a critical part of deep learning (DL) that requires careful conduct to enhance confidence and reliability. Several metrics exist to evaluate DL models, however, choosing one for a given model is not trivial, since it is not a one-fit-all solution. Practically, accuracy is the most popularly used evaluation metric for capsule networks (CapsNets). This is problematic for sensitive applications (e.g. health), since accuracy is overly optimistic in the presence of class imbalance, and does not permit the exact reporting of a model’s risk of bias and potential usefulness. This paper, therefore, aims at demonstrating the usefulness of other metrics for performance evaluation as well as interpretability through the implementation of a custom capsule model. The metrics are effective in measuring the real performance of the models in terms of accuracy (93.03% for proposed model), number of parameters ( ≈ 4 million fewer for proposed model), ability to scale and fail-safe, and the effectiveness of the routing process when evaluated on the datasets. Evaluating a CapsNet model with all these metrics has the potential to enhance the practitioner’s confidence and also improve model understandability and reliability.


Availability

No copy data


Detail Information

Series Title
-
Call Number
-
Publisher International Journal of Computing and Digital Systems : Bahrain.,
Collation
006
Language
English
ISBN/ISSN
2210-142X
Classification
NONE
Content Type
-
Media Type
-
Carrier Type
-
Edition
-
Subject(s)
Specific Detail Info
-
Statement of Responsibility

Other Information

Accreditation
Scopus Q3

Other version/related

No other version available


File Attachment



Information


Web Online Public Access Catalog - Use the search options to find documents quickly