Image of Dimensionality Reduction Method Apply for Multi-view Multimodal Person Identification

Text

Dimensionality Reduction Method Apply for Multi-view Multimodal Person Identification



In biometric systems, reducing the data dimensionality without compromising intrinsic information is essential in pre-processing high-dimensional data. Many states of the art use techniques to minimize the dimensionality of such data and avoid the so-called curse of dimensionality. When operating on limited datasets, supervised methods suffer from over fitting. Reducing the semi-supervised dimensionality in the next comparison or classification module can affect the recognition efficiency. This article introduces a novel multi-view multimodal semi-supervised dimensionality reduction methodology that applies Multi-view Multidimensional scaling dimensionality reduction based on Gabor 2D-Log extraction features and Fuzzy Multiclass SVM classification (FMSVM), respectively. In addition, it examines its application to multi-view multimodal biometric processing, especially multi-view faces, and fingerprints. An experimental study was conducted, and the results emphasize that this methodology surpasses baseline supervised and semi-supervised methods.


Availability

No copy data


Detail Information

Series Title
-
Call Number
-
Publisher International Journal of Computing and Digital Systems : Bahrain.,
Collation
006
Language
English
ISBN/ISSN
2210-142X
Classification
NONE
Content Type
-
Media Type
-
Carrier Type
-
Edition
-
Subject(s)
Specific Detail Info
-
Statement of Responsibility

Other Information

Accreditation
Scopus Q3

Other version/related

No other version available


File Attachment



Information


Web Online Public Access Catalog - Use the search options to find documents quickly