Image of Performability of Deep Recurrent Neural Networks for Molecular Sequence data

Text

Performability of Deep Recurrent Neural Networks for Molecular Sequence data



Artificial Intelligence (AI) has appeared as a life-changing innovation in recent years transforming the conventional problem-solving strategies adopted so far. ML and DL-based approaches are making a monumental impact in the fields of life sciences and health care. The tremendous amount of biochemical data has set off leading-edge research in health care and Drug Discovery. Molecular Machine Learning has precisely adopted ML techniques to uncover new insights from biochemical data. Biochemical datasets essentially hold text-based sequential information about molecules in several forms. Simplified Molecular Input Line Entry System (SMILES) is a highly efficient format for representing biochemical data that can be suitably utilized for countless relevant applications. This work presents the SMILES molecular representation in a nutshell and is centered on the major applications of ML and DL in health care especially in the drug discovery process using SMILES. This work utilizes a sequence-to-sequence architecture built on Recurrent Neural Networks (RNNs) for generating small drug-like molecules using the benchmark datasets. The experimental results prove that the Long Short Term Memory (LSTM) based RNNs can be trained to encode the raw SMILES strings with nearly perfect accuracy and to generate similar molecular structures with minimal or no feature engineering. The gradient-based optimization strategy is applied to the network and found distinctly suited to assemble the most stable and proficient sequence model. RNNs can thus be employed in Drug Discovery activities like similarity-based virtual screening, lead compound finding, and hit-to-lead optimization.


Availability

No copy data


Detail Information

Series Title
-
Call Number
-
Publisher International Journal of Computing and Digital Systems : Bahrain.,
Collation
006
Language
English
ISBN/ISSN
2210-142X
Classification
NONE
Content Type
-
Media Type
-
Carrier Type
-
Edition
-
Subject(s)
Specific Detail Info
-
Statement of Responsibility

Other Information

Accreditation
Scopus Q3

Other version/related

No other version available


File Attachment



Information


Web Online Public Access Catalog - Use the search options to find documents quickly