Image of AraBERTopic: A Neural Topic Modeling Approach for News Extraction from Arabic Facebook Pages using Pre-trained BERT Transformer Model

Text

AraBERTopic: A Neural Topic Modeling Approach for News Extraction from Arabic Facebook Pages using Pre-trained BERT Transformer Model



Topic modeling algorithms can better understand data by extracting meaningful words from text collection, but the results are often inconsistent, and consequently difficult to interpret. Enrich the model with more contextual knowledge can improve coherence. Recently, neural topic models have emerged, and the development of neural models, in general, was pushed by BERT-based representations. We propose in this paper, a model named AraBERTopic to extract news from Facebook pages. Our model combines the Pre-training BERT transformer model for the Arabic language (AraBERT) and neural topic model ProdLDA. Thus, compared with the standard LDA, pre-trained BERT sentence embeddings produce more meaningful and coherent topics using different embedding models. Results show that our AraBERTopic model gives 0.579 in topic coherence.


Availability

No copy data


Detail Information

Series Title
-
Call Number
-
Publisher International Journal of Computing and Digital Systems : Bahrain.,
Collation
006
Language
English
ISBN/ISSN
2210-142X
Classification
NONE
Content Type
-
Media Type
-
Carrier Type
-
Edition
-
Subject(s)
Specific Detail Info
-
Statement of Responsibility

Other Information

Accreditation
Scopus Q3

Other version/related

No other version available


File Attachment



Information


Web Online Public Access Catalog - Use the search options to find documents quickly