Image of Drone-Assisted Plant Disease Identification Using Artificial Intelligence: A Critical Review

Text

Drone-Assisted Plant Disease Identification Using Artificial Intelligence: A Critical Review



Artificial intelligence has been incorporated into modern agriculture to increase agricultural output and resource efficiency. Utilizing deep learning, particularly convolutional neural networks, for recognizing and diagnosing plant diseases is tempting. In parallel, drone integration in precision agriculture has accelerated, providing new potential for crop monitoring, map creation, and targeted treatments. This study analyzes over 100 significant research articles published between 2018 and 2023, examining the interaction between drones and artificial intelligence in identifying plant diseases. We begin by explaining the value of sensor and drone technology in identifying plant diseases and carefully mapping the area. The various CNN architectures and drone-based approaches essential for precise illness detection and diagnosis are then highlighted in a thorough research review. Our research highlights how this combination can transform how plant diseases are managed completely. This study emphasizes the conceptual underpinnings of this new fusion, even if fulfilling this promise needs additional investigation. In conclusion, we expect changing research paths to direct improvements in this field and integrate AI, deep learning, drones, and plant pathology into a coherent framework with significant agricultural consequences.


Availability

No copy data


Detail Information

Series Title
-
Call Number
-
Publisher International Journal of Computing and Digital Systems : Bahrain.,
Collation
006
Language
English
ISBN/ISSN
2210-142X
Classification
NONE
Content Type
-
Media Type
-
Carrier Type
-
Edition
-
Subject(s)
Specific Detail Info
-
Statement of Responsibility

Other Information

Accreditation
Scopus Q3

Other version/related

No other version available


File Attachment



Information


Web Online Public Access Catalog - Use the search options to find documents quickly