Image of Supervised Learning Computer Vision Benchmark for Snake Species Identification From Photographs: Implications for Herpetology and Global Health

Text

Supervised Learning Computer Vision Benchmark for Snake Species Identification From Photographs: Implications for Herpetology and Global Health



We trained a computer vision algorithm to identify 45 species of snakes from photos and compared its performance to that of humans. Both human and algorithm performance is substantially better than randomly guessing (null probability of guessing correctly given 45 classes 2.2%). Some species (e.g., Boa constrictor) are routinely identified with ease by both algorithm and humans, whereas other groups of species (e.g., uniform green snakes, blotched brown snakes) are routinely confused. A species complex with largely molecular species delimitation (North American ratsnakes) was the most challenging for computer vision. Humans had an edge at identifying images of poor quality or with visual artifacts. With future improvement, computer vision could play a larger role in snakebite epidemiology, particularly when combined with information about geographic location and input from human experts.


Availability

No copy data


Detail Information

Series Title
-
Call Number
-
Publisher Frontiers in Artificial Intelligence : Switzerland.,
Collation
006
Language
English
ISBN/ISSN
2624-8212
Classification
NONE
Content Type
-
Media Type
-
Carrier Type
-
Edition
-
Subject(s)
Specific Detail Info
-
Statement of Responsibility

Other Information

Accreditation
Scopus Q3

Other version/related

No other version available


File Attachment



Information


Web Online Public Access Catalog - Use the search options to find documents quickly