Image of Closed-Form Results for Prior Constraints in Sum-Product Networks

Text

Closed-Form Results for Prior Constraints in Sum-Product Networks



Incorporating constraints is a major concern in probabilistic machine learning. A wide variety of problems require predictions to be integrated with reasoning about constraints, from modeling routes on maps to approving loan predictions. In the former, we may require the prediction model to respect the presence of physical paths between the nodes on the map, and in the latter, we may require that the prediction model respect fairness constraints that ensure that outcomes are not subject to bias. Broadly speaking, constraints may be probabilistic, logical or causal, but the overarching challenge is to determine if and how a model can be learnt that handles a declared constraint. To the best of our knowledge, treating this in a general way is largely an open problem. In this paper, we investigate how the learning of sum-product networks, a newly introduced and increasingly popular class of tractable probabilistic models, is possible with declared constraints. We obtain correctness results about the training of these models, by establishing a relationship between probabilistic constraints and the model’s parameters.


Availability

No copy data


Detail Information

Series Title
-
Call Number
-
Publisher Frontiers in Artificial Intelligence : Switzerland.,
Collation
006
Language
English
ISBN/ISSN
2624-8212
Classification
NONE
Content Type
-
Media Type
-
Carrier Type
-
Edition
-
Subject(s)
Specific Detail Info
-
Statement of Responsibility

Other Information

Accreditation
Scopus Q3

Other version/related

No other version available


File Attachment



Information


Web Online Public Access Catalog - Use the search options to find documents quickly