Image of InferBERT: A Transformer-Based Causal Inference Framework for Enhancing Pharmacovigilance

Text

InferBERT: A Transformer-Based Causal Inference Framework for Enhancing Pharmacovigilance



Background: T ransformer-based language models have delivered clear improvements in a wide range of natural language processing (NLP) tasks. However, those models have a significant limitation; specifically, they cannot infer causality, a prerequisite for deployment in pharmacovigilance, and health care. Therefore, these transformer-based language models should be developed to infer causality to address the key question of the cause of a clinical outcome.
Results: In this study, we propose an innovative causal inference model–InferBERT, by integrating the A Lite Bidirectional Encoder Representations from Transformers (ALBERT) and Judea Pearl’s Do-calculus to establish potential causality in pharmacovigilance. Two FDA Adverse Event Reporting System case studies, including Analgesics-related acute liver failure and Tramadol-related mortalities, were employed to evaluate the proposed InferBERT model. The InferBERT model yielded accuracies of 0.78 and 0.95 for identifying Analgesics-related acute liver failure and Tramadol-related death cases, respectively. Meanwhile, the inferred causes of the two clinical outcomes, (i.e. acute liver failure and death) were highly consistent with clinical knowledge. Furthermore, inferred causes were organized into a causal tree using the proposed recursive do-calculus algorithm to improve the model’s understanding of causality. Moreover, the high reproducibility of the proposed InferBERT model was demonstrated by a robustness assessment.
Conclusion: The empirical results demonstrated that the proposed InferBERT approach is able to both predict clinical events and to infer their causes. Overall, the proposed InferBERT model is a promising approach to establish causal effects behind text-based observational data to enhance our understanding of intrinsic causality.
Availability and implementation: The InferBERT model and preprocessed FAERS data sets are available on GitHub at https://github.com/XingqiaoWang/DeepCausalPV-master.


Availability

No copy data


Detail Information

Series Title
-
Call Number
-
Publisher Frontiers in Artificial Intelligence : Switzerland.,
Collation
006
Language
English
ISBN/ISSN
2624-8212
Classification
NONE
Content Type
-
Media Type
-
Carrier Type
-
Edition
-
Subject(s)
Specific Detail Info
-
Statement of Responsibility

Other Information

Accreditation
Scopus Q3

Other version/related

No other version available


File Attachment



Information


Web Online Public Access Catalog - Use the search options to find documents quickly