Image of Early Classification of Intent for Maritime Domains Using Multinomial Hidden Markov Models

Text

Early Classification of Intent for Maritime Domains Using Multinomial Hidden Markov Models



The need for increased maritime security has prompted research focus on intent recognition solutions for the naval domain. We consider the problem of early classification of the hostile behavior of agents in a dynamic maritime domain and propose our solution using multinomial hidden Markov models (HMMs). Our contribution stems from a novel encoding of observable symbols as the rate of change (instead of static values) for parameters relevant to the task, which enables the early classification of hostile behaviors, well before the behavior has been finalized. We discuss our implementation of a one-versus-all intent classifier using multinomial HMMs and present the performance of our system for three types of hostile behaviors (ram, herd, block) and a benign behavior.


Availability

No copy data


Detail Information

Series Title
-
Call Number
-
Publisher Frontiers in Artificial Intelligence : Switzerland.,
Collation
006
Language
English
ISBN/ISSN
2624-8212
Classification
NONE
Content Type
-
Media Type
-
Carrier Type
-
Edition
-
Subject(s)
Specific Detail Info
-
Statement of Responsibility

Other Information

Accreditation
Scopus Q3

Other version/related

No other version available


File Attachment



Information


Web Online Public Access Catalog - Use the search options to find documents quickly