Image of Modelling Speaker Attribution in Narrative Texts With Biased and Bias-Adjustable Neural Networks

Text

Modelling Speaker Attribution in Narrative Texts With Biased and Bias-Adjustable Neural Networks



Literary narratives regularly contain passages that different readers attribute to different speakers: a character, the narrator, or the author. Since literary narratives are highly ambiguous constructs, it is often impossible to decide between diverging attributions of a specific passage by hermeneutic means. Instead, we hypothesise that attribution decisions are often influenced by annotator bias, in particular an annotator’s literary preferences and beliefs. We present first results on the correlation between the literary attitudes of an annotator and their attribution choices. In a second set of experiments, we present a neural classifier that is capable of imitating individual annotators as well as a common-sense annotator, and reaches accuracies of up to 88% (which improves the majority baseline by 23%).


Availability

No copy data


Detail Information

Series Title
-
Call Number
-
Publisher Frontiers in Artificial Intelligence : Switzerland.,
Collation
006
Language
English
ISBN/ISSN
2624-8212
Classification
NONE
Content Type
-
Media Type
-
Carrier Type
-
Edition
-
Subject(s)
Specific Detail Info
-
Statement of Responsibility

Other Information

Accreditation
Scopus Q3

Other version/related

No other version available


File Attachment



Information


Web Online Public Access Catalog - Use the search options to find documents quickly