Image of Sentiment Analysis of Students’ Feedback in MOOCs: A Systematic Literature Review

Text

Sentiment Analysis of Students’ Feedback in MOOCs: A Systematic Literature Review



In recent years, sentiment analysis (SA) has gained popularity among researchers in various domains, including the education domain. Particularly, sentiment analysis can be applied to review the course comments in massive open online courses (MOOCs), which could enable instructors to easily evaluate their courses. This article is a systematic literature review on the use of sentiment analysis for evaluating students’ feedback in MOOCs, exploring works published between January 1, 2015, and March 4, 2021. To the best of our knowledge, this systematic review is the first of its kind. We have applied a stepwise PRISMA framework to guide our search process, by searching for studies in six electronic research databases (ACM, IEEE, ScienceDirect, Springer, Scopus, and Web of Science). Our review identified 40 relevant articles out of 440 that were initially found at the first stage. From the reviewed literature, we found that the research has revolved around six areas: MOOC content evaluation, feedback contradiction detection, SA effectiveness, SA through social network posts, understanding course performance and dropouts, and MOOC design model evaluation. In the end, some recommendations are provided and areas for future research directions are identified.


Availability

No copy data


Detail Information

Series Title
-
Call Number
-
Publisher Frontiers in Artificial Intelligence : Switzerland.,
Collation
006
Language
English
ISBN/ISSN
2624-8212
Classification
NONE
Content Type
-
Media Type
-
Carrier Type
-
Edition
-
Subject(s)
Specific Detail Info
-
Statement of Responsibility

Other Information

Accreditation
Scopus Q3

Other version/related

No other version available


File Attachment



Information


Web Online Public Access Catalog - Use the search options to find documents quickly