Image of Implementation of a Commitment Machine for an Adaptive and Robust Expected Shortfall Estimation

Text

Implementation of a Commitment Machine for an Adaptive and Robust Expected Shortfall Estimation



This study proposes a metaheuristic for the selection of models among different Expected Shortfall (ES) estimation methods. The proposed approach, denominated “Commitment Machine” (CM), has a strong focus on assets cross-correlation and allows to measure adaptively the ES, dynamically evaluating which is the most performing method through the minimization of a loss function. The CM algorithm compares four different ES estimation techniques which all take into account the interaction effects among assets: a Bayesian Vector autoregressive model, Stochastic Differential Equation (SDE) numerical schemes with Exponential Weighted Moving Average (EWMA), a Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) volatility model and a hybrid method that integrates Dynamic Recurrent Neural Networks together with a Monte Carlo approach. The integration of traditional Monte Carlo approaches with Machine Learning technologies and the heterogeneity of dynamically selected methodologies lead to an improved estimation of the ES. The study describes the techniques adopted by the CM and the logic behind model selection; moreover, it provides a market application case of the proposed metaheuristic, by simulating an equally weighted multi-asset portfolio.


Availability

No copy data


Detail Information

Series Title
-
Call Number
-
Publisher Frontiers in Artificial Intelligence : Switzerland.,
Collation
006
Language
English
ISBN/ISSN
2624-8212
Classification
NONE
Content Type
-

Other Information

Accreditation
Scopus Q3

Other version/related

No other version available


File Attachment



Information


Web Online Public Access Catalog - Use the search options to find documents quickly