Record Detail
Advanced SearchText
Targeted Screening for Alzheimer’s Disease Clinical Trials Using Data-Driven Disease Progression Models
Heterogeneity in Alzheimer’s disease progression contributes to the ongoing failure to demonstrate efficacy of putative disease-modifying therapeutics that have been trialed over the past two decades. Any treatment effect present in a subgroup of trial participants (responders) can be diluted by non-responders who ideally should have been screened out of the trial. How to identify (screen-in) the most likely potential responders is an important question that is still without an answer. Here, we pilot a computational screening tool that leverages recent advances in data-driven disease progression modeling to improve stratification. This aims to increase the sensitivity to treatment effect by screening out non-responders, which will ultimately reduce the size, duration, and cost of a clinical trial. We demonstrate the concept of such a computational screening tool by retrospectively analyzing a completed double-blind clinical trial of donepezil in people with amnestic mild cognitive impairment (clinicaltrials.gov: NCT00000173), identifying a data-driven subgroup having more severe cognitive impairment who showed clearer treatment response than observed for the full cohort.
Availability
No copy data
Detail Information
| Series Title |
-
|
|---|---|
| Call Number |
-
|
| Publisher | Frontiers in Artificial Intelligence : Switzerland., 2022 |
| Collation |
006
|
| Language |
English
|
| ISBN/ISSN |
2624-8212
|
| Classification |
NONE
|
| Content Type |
-
|
| Media Type |
-
|
|---|---|
| Carrier Type |
-
|
| Edition |
-
|
| Subject(s) | |
| Specific Detail Info |
-
|
| Statement of Responsibility |
-
|
Other Information
| Accreditation |
Scopus Q3
|
|---|
Other version/related
No other version available
File Attachment
Information
Web Online Public Access Catalog - Use the search options to find documents quickly






