Image of Automatic Artifact Detection Algorithm in Fetal MRI

Text

Automatic Artifact Detection Algorithm in Fetal MRI



Fetal MR imaging is subject to artifacts including motion, chemical shift, and radiofrequency artifacts. Currently, such artifacts are detected by the MRI operator, a process which is subjective, time consuming, and prone to errors. We propose a novel algorithm, RISE-Net, that can consistently, automatically, and objectively detect artifacts in 3D fetal MRI. It makes use of a CNN ensemble approach where the first CNN aims to identify and classify any artifacts in the image, and the second CNN uses regression to determine the severity of the detected artifacts. The main mechanism in RISE-Net is the stacked Residual, Inception, Squeeze and Excitation (RISE) blocks. This classification network achieved an accuracy of 90.34% and a F1 score of 90.39% and outperformed other state-of-the-art architectures, such as VGG-16, Inception, ResNet-50, ReNet-Inception, SE-ResNet, and SE-Inception. The severity regression network had an MSE of 0.083 across all classes. The presented algorithm facilitates rapid and accurate fetal MRI quality assurance that can be implemented into clinical use.


Availability

No copy data


Detail Information

Series Title
-
Call Number
-
Publisher Frontiers in Artificial Intelligence : Switzerland.,
Collation
006
Language
English
ISBN/ISSN
2624-8212
Classification
NONE
Content Type
-
Media Type
-
Carrier Type
-
Edition
-
Subject(s)
Specific Detail Info
-
Statement of Responsibility

Other Information

Accreditation
Scopus Q3

Other version/related

No other version available


File Attachment



Information


Web Online Public Access Catalog - Use the search options to find documents quickly