Image of Predicting Escherichia coli levels in manure using machine learning in weeping wall and mechanical liquid solid separation systems

Text

Predicting Escherichia coli levels in manure using machine learning in weeping wall and mechanical liquid solid separation systems



An increased understanding of the interaction between manure management and public and environmental health has led to the development of Alternative Dairy E uent Management Strategies (ADEMS). The eciency of such ADEMS can be increased using mechanical solid-liquid-separator (SLS) or gravitational Weeping-Wall (WW) solid separation systems. In this research, using pilot study data from 96 samples, the chemical, physical, biological, seasonal, and structural parameters between SLS and WW of ADEM systems were compared. Parameters including sodium, potassium, total salts, volatile solids, pH, and E. coli levels were significantly different between the SLS and WW of ADEMS. The separated solid fraction of the dairy e uents had the lowest E. coli levels, which could have beneficial downstream implications in terms of microbial pollution control. To predict e uent quality and microbial pollution risk, we used Escherichia coli as the indicator organism, and a versatile machine learning, ensemble, stacked, super-learner model called E-C-MAN (Escherichia coli–Manure) was developed. Using pilot data, the E-C-MAN model was trained, and the trained model was validated with the test dataset. These results demonstrate that the heuristic E-C-MAN ensemble model can provide a pilot framework toward predicting Escherichia coli levels in manure treated by SLS or WW systems.


Availability

No copy data


Detail Information

Series Title
-
Call Number
-
Publisher Frontiers in Artificial Intelligence : Switzerland.,
Collation
006
Language
English
ISBN/ISSN
2624-8212
Classification
NONE
Content Type
-
Media Type
-
Carrier Type
-
Edition
-
Subject(s)
Specific Detail Info
-
Statement of Responsibility

Other Information

Accreditation
Scopus Q3

Other version/related

No other version available


File Attachment



Information


Web Online Public Access Catalog - Use the search options to find documents quickly