Image of Deep learning prediction of two-dimensional ocean dynamics with wavelet-compressed data

Text

Deep learning prediction of two-dimensional ocean dynamics with wavelet-compressed data



This study addresses the challenge represented by the application of deep learning models to the prediction of ocean dynamics using datasets over a large region or with high spatial or temporal resolution In a previous study by the authors of this article, they showed that such a challenge could be met by using a divide and conquer approach. The domain was in fact split into multiple sub-regions, which were small enough to be predicted individually and in parallel with each other by a deep learning model. At each time step of the prediction process, the sub-model solutions would be merged at the boundary of each sub-region to remove discontinuities between consecutive domains in order to predict the evolution of the full domain. This approach led to the growth of non-dynamical errors that decreased the prediction skill of our model. In the study herein, we show that wavelets can be used to compress the data and reduce its dimension. Each compression level reduces by a factor of two the horizontal resolution of the dataset. We show that despite the loss of information, a level 3 compression produces an improved prediction of the ocean two-dimensional data in comparison to the divide and conquer approach. Our method is evaluated on the prediction of the sea surface height of the most energetic feature of the Gulf of Mexico, namely the Loop Current.


Availability

No copy data


Detail Information

Series Title
-
Call Number
-
Publisher Frontiers in Artificial Intelligence : Switzerland.,
Collation
006
Language
English
ISBN/ISSN
2624-8212
Classification
NONE
Content Type
-
Media Type
-
Carrier Type
-
Edition
-
Subject(s)
Specific Detail Info
-
Statement of Responsibility

Other Information

Accreditation
Scopus Q3

Other version/related

No other version available


File Attachment



Information


Web Online Public Access Catalog - Use the search options to find documents quickly