Image of A novel technique for detecting sudden concept drift in healthcare data using multi-linear artificial intelligence techniques

Text

A novel technique for detecting sudden concept drift in healthcare data using multi-linear artificial intelligence techniques



A financial market is a platform to produce data streams continuously and around 1. 145 Trillion MB of data per day. Estimation and the analysis of unknown or dynamic behaviors of these systems is one the challenging tasks. Analysis of these systems is very much essential to strengthen the environmental parameters to stabilize society activities. This can elevate the living style of society to the next level. In this connection, the proposed paper is trying to accommodate the financial data stream using the sliding window approach and random forest algorithm to provide a solution to handle concept drift in the financial market to stabilize the behavior of the system through drift estimation. The proposed approach provides promising results in terms of accuracy in detecting concept drift over the state of existing drift detection methods like one class drifts detection (OCDD), Adaptive Windowing ADWIN), and the Page-Hinckley test.


Availability

No copy data


Detail Information

Series Title
-
Call Number
-
Publisher Frontiers in Artificial Intelligence : Switzerland.,
Collation
006
Language
English
ISBN/ISSN
2624-8212
Classification
NONE
Content Type
-
Media Type
-
Carrier Type
-
Edition
-
Subject(s)
Specific Detail Info
-
Statement of Responsibility

Other Information

Accreditation
Scopus Q3

Other version/related

No other version available


File Attachment



Information


Web Online Public Access Catalog - Use the search options to find documents quickly