Image of Sentence-level complexity in Russian: An evaluation of BERT and graph neural networks

Text

Sentence-level complexity in Russian: An evaluation of BERT and graph neural networks



Introduction: Sentence-level complexity evaluation (SCE) can be formulated as assigning a given sentence a complexity score: either as a category, or a single value. SCE task can be treated as an intermediate step for text complexity prediction, text simplification, lexical complexity prediction, etc. What is more, robust prediction of a single sentence complexity needs much shorter text fragments than the ones typically required to robustly evaluate text complexity. Morphosyntactic and lexical features have proved their vital role as predictors in the state-of-the-art deep neural models for sentence categorization. However, a common issue is the interpretability of deep neural network results.
Methods: This paper presents testing and comparing several approaches to predict both absolute and relative sentence complexity in Russian. The evaluation involves Russian BERT, Transformer, SVM with features from sentence embeddings, and a graph neural network. Such a comparison is done for the first time for the Russian language.
Results and discussion: Pre-trained language models outperform graph neural networks, that incorporate the syntactical dependency tree of a sentence. The graph neural networks perform better than Transformer and SVM classifiers that employ sentence embeddings. Predictions of the proposed graph neural network architecture can be easily explained.


Availability

No copy data


Detail Information

Series Title
-
Call Number
-
Publisher Frontiers in Artificial Intelligence : Switzerland.,
Collation
006
Language
English
ISBN/ISSN
2624-8212
Classification
NONE
Content Type
-
Media Type
-
Carrier Type
-
Edition
-
Subject(s)
Specific Detail Info
-
Statement of Responsibility

Other Information

Accreditation
Scopus Q3

Other version/related

No other version available


File Attachment



Information


Web Online Public Access Catalog - Use the search options to find documents quickly