Image of Large-scale Vietnamese point-of-interest classification using weak labeling

Text

Large-scale Vietnamese point-of-interest classification using weak labeling



Point-of-Interests (POIs) represent geographic location by different categories (e.g., touristic places, amenities, or shops) and play a prominent role in several location-based applications. However, the majority of POIs category labels are crowd-sourced by the community, thus often of low quality. In this paper, we introduce the first annotated dataset for the POIs categorical classification task in Vietnamese. A total of 750,000 POIs are collected from WeMap, a Vietnamese digital map. Large-scale hand-labeling is inherently time-consuming and labor-intensive, thus we have proposed a new approach using weak labeling. As a result, our dataset covers 15 categories with 275,000 weak-labeled POIs for training, and 30,000 gold-standard POIs for testing, making it the largest compared to the existing Vietnamese POIs dataset. We empirically conduct POI categorical classification experiments using a strong baseline (BERT-based fine-tuning) on our dataset and find that our approach shows high eciency and is applicable on a large scale. The proposed baseline gives an F1 score of 90% on the test dataset, and significantly improves the accuracy of WeMap POI data by a margin of 37% (from 56 to 93%).


Availability

No copy data


Detail Information

Series Title
-
Call Number
-
Publisher Frontiers in Artificial Intelligence : Switzerland.,
Collation
006
Language
English
ISBN/ISSN
2624-8212
Classification
NONE
Content Type
-
Media Type
-
Carrier Type
-
Edition
-
Subject(s)
Specific Detail Info
-
Statement of Responsibility

Other Information

Accreditation
Scopus Q3

Other version/related

No other version available


File Attachment



Information


Web Online Public Access Catalog - Use the search options to find documents quickly