No image available for this title

Text

Handling Unbalanced Data Sets Using DBMUTE and NearMiss Methods to Improve Classification Performance of Yeast Data Sets



Yeast vacuole biogenesis was chosen as a model system for organelle assembly because most vacuole functions can be used for vegetative cell growth. Therefore it is possible to generate an extensive collection of mutants with defects in unbalanced vacuole assembly. With this in mind, we must find the structural balance of data in yeast. Imbalanced data is when there is an unbalanced distribution of data classes and the number of data classes is either more or lower than the number of other data classes. Our method uses the f1 score performance matrix method and the balanced accuracy on DBMUTE and NearMiss undersampling. Previously, only a few studies explained the results of using a performance matrix and balanced accuracy. Then, find out the performance results of the f1 score and balanced accuracy and get the best score from the yeast data sets. In the study, a comparison between the imbalanced data sets using the undersampling method. Furthermore, to obtain the performance matrix results, use the f1 score and balance accuracy. After testing five yeast data sets, we performed an average f1 score and balance accuracy with the highest average NearMiss f1 score of 62.23% and the highest average balanced accuracy of 78.59%.


Availability

No copy data


Detail Information

Series Title
-
Call Number
-
Publisher JURNAL MEDIA INFORMATIKA BUDIDARMA : Indonesia.,
Collation
006
Language
English
ISBN/ISSN
2614-5278
Classification
NONE
Content Type
-
Media Type
-
Carrier Type
-
Edition
-
Subject(s)
Specific Detail Info
-
Statement of Responsibility

Other Information

Accreditation
-

Other version/related

No other version available


File Attachment



Information


Web Online Public Access Catalog - Use the search options to find documents quickly