Image of PENDUGAAN KELAS MUTU BUAH PEPAYA   BERDASARKAN CIRI TEKSTUR GLCM MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBORS

Text

PENDUGAAN KELAS MUTU BUAH PEPAYA BERDASARKAN CIRI TEKSTUR GLCM MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBORS



Proses klasifikasi mutu buah pepaya dengan cara konvensional menggunakan visual mata manusia memiliki kelemahan di antaranya yaitu membutuhkan tenaga lebih banyak untuk memilah, tingkat persepsi manusia yang berbeda, tingkat konsistensi manusia dalam menilai mutu buah tidak menjamin karena manusia dapat mengalami kelelahan. Penelitian ini bertujuan merancang dan menyusun program pengolahan citra digital dan algoritma k-Nearest Neighbor untuk klasifikasi pemutuan buah pepaya (Carica Papaya L) Calina IPB-9 ke dalam tiga kelas mutu yaitu kelas Super, A, dan B. Fitur tekstur yang diekstrak meliputi nilai energy, entropy, contras, homogeneity, invers difference moment, variance, dan dissimilarity yang didapatkan berdasarkan GLCM (gray level cooccurrence matrices). Fitur-fitur tersebut dijadikan sebagai input pada algoritma k-Nearest Neighbor untuk menghitung jarak. Hasil pengujian menggunakan jumlah k tetangga 9 menunjukan tingkat akurasi sebesar 88,88%.


Availability

No copy data


Detail Information

Series Title
-
Call Number
-
Publisher Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI) : Indonesia.,
Collation
005
Language
Indonesia
ISBN/ISSN
2089-8673
Classification
NONE
Content Type
-
Media Type
-
Carrier Type
-
Edition
-
Subject(s)
Specific Detail Info
-
Statement of Responsibility

Other Information

Accreditation
-

Other version/related

No other version available


File Attachment



Information


Web Online Public Access Catalog - Use the search options to find documents quickly