Record Detail
Advanced Search
Text
PENDUGAAN KELAS MUTU BUAH PEPAYA BERDASARKAN CIRI TEKSTUR GLCM MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBORS
Proses klasifikasi mutu buah pepaya dengan cara konvensional menggunakan visual mata manusia memiliki kelemahan di antaranya yaitu membutuhkan tenaga lebih banyak untuk memilah, tingkat persepsi manusia yang berbeda, tingkat konsistensi manusia dalam menilai mutu buah tidak menjamin karena manusia dapat mengalami kelelahan. Penelitian ini bertujuan merancang dan menyusun program pengolahan citra digital dan algoritma k-Nearest Neighbor untuk klasifikasi pemutuan buah pepaya (Carica Papaya L) Calina IPB-9 ke dalam tiga kelas mutu yaitu kelas Super, A, dan B. Fitur tekstur yang diekstrak meliputi nilai energy, entropy, contras, homogeneity, invers difference moment, variance, dan dissimilarity yang didapatkan berdasarkan GLCM (gray level cooccurrence matrices). Fitur-fitur tersebut dijadikan sebagai input pada algoritma k-Nearest Neighbor untuk menghitung jarak. Hasil pengujian menggunakan jumlah k tetangga 9 menunjukan tingkat akurasi sebesar 88,88%.
Availability
No copy data
Detail Information
Series Title |
-
|
---|---|
Call Number |
-
|
Publisher | Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI) : Indonesia., 2018 |
Collation |
005
|
Language |
Indonesia
|
ISBN/ISSN |
2089-8673
|
Classification |
NONE
|
Content Type |
-
|
Media Type |
-
|
---|---|
Carrier Type |
-
|
Edition |
-
|
Subject(s) | |
Specific Detail Info |
-
|
Statement of Responsibility |
-
|
Other Information
Accreditation |
-
|
---|
Other version/related
No other version available
File Attachment
Information
Web Online Public Access Catalog - Use the search options to find documents quickly