Record Detail
Advanced Search
Text
ALTERNATIVE TEXT PRE-PROCESSING USING CHAT GPT OPEN AI
Text Pre-Processing is the first step in Sentiment Analysis. Categorizing a sentiment in a dataset is part of the Text-Preprocessing stage to get the optimal model accuracy value. Generative Pretrained Transformer, often known as Chat GPT, is a Machine Learning model that can automatically generate realistic and meaningful text. This study aims to examine the capability of GPT Chat as an alternative in the Text-PreProcessing stage by utilizing GPT Chat 3 from the openai.com website in the Text-Pre-Processing stage of the collected tweet data. The data used in this research is the result of crawling Twitter by inserting the keyword "Chat GPT”. This study method was carried out by measuring performance using the K-Nearest Neighbor and Naïve Bayes Algorithms to find the best performance value and compare it with the TextPreprocessing generated by Rapidminer. It is shown that the performance accuracy produced using the KNearest Neighbor Algorithm is 73.57% using the Linear Sampling method. The comparison result with the Text-Preprocessing method using Rapidminer indeed shows a better accuracy of 75.33%, which means it has a narrow difference of 1.76% with the Chat GPT Text Pre-Processing method. However, both are still in the same category, which is Fair Classification. The results of this research show that Chat GPT can be an alternative in Text-Preprocessing datasets for sentiment analysis.
Availability
No copy data
Detail Information
Series Title |
-
|
---|---|
Call Number |
-
|
Publisher | Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI) : Indonesia., 2023 |
Collation |
005
|
Language |
English
|
ISBN/ISSN |
2089-8673
|
Classification |
NONE
|
Content Type |
-
|
Media Type |
-
|
---|---|
Carrier Type |
-
|
Edition |
-
|
Subject(s) | |
Specific Detail Info |
-
|
Statement of Responsibility |
-
|
Other Information
Accreditation |
-
|
---|
Other version/related
No other version available
File Attachment
Information
Web Online Public Access Catalog - Use the search options to find documents quickly