Record Detail
Advanced Search
Text
EFFECT OF WORD2VEC WEIGHTING WITH CNN-BILSTM MODEL ON EMOTION CLASSIFICATION
Emotion is an element that can influence human behavior, which in turn influences a decision. Human emotion detection is useful in many areas, including the social environment and product quality. To evaluate and categorize emotions derived from text, a method is required. As a result, the CNN-BiLSTM model, a classification method, aids in the analysis of the text's emotional content. A word weighting technique employing word2vec as a word weighting will help the model. The CNN-BiLSTM model with Word2vec as a pre-trained model is being used in this study to find the findings with the highest accuracy. The information is split into two groups: training and testing, and it is categorized into six categories according to how each emotion manifests itself: surprise, sadness, rage, fear, love, and joy. The best outcome from the CNNBiLSTM model's accuracy of emotion classification is 92.85%.
Availability
No copy data
Detail Information
Series Title |
-
|
---|---|
Call Number |
-
|
Publisher | Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI) : Indonesia., 2023 |
Collation |
005
|
Language |
English
|
ISBN/ISSN |
2089-8673
|
Classification |
NONE
|
Content Type |
-
|
Media Type |
-
|
---|---|
Carrier Type |
-
|
Edition |
-
|
Subject(s) | |
Specific Detail Info |
-
|
Statement of Responsibility |
-
|
Other Information
Accreditation |
-
|
---|
Other version/related
No other version available
File Attachment
Information
Web Online Public Access Catalog - Use the search options to find documents quickly