Image of HOLE DETECTION IN PLASTIC MULCH USING TEMPLATE MATCHING AND MACHINE LEARNING ALGORITHMS

Text

HOLE DETECTION IN PLASTIC MULCH USING TEMPLATE MATCHING AND MACHINE LEARNING ALGORITHMS



Mulch is a ground cover material to maintain soil moisture and temperature stability as a plant medium. Mulch also helps prevent weed growth for better plant growth. For planting with plastic mulch, farmers need to make holes in the mulch the day before planting. Precision agriculture is needed because it can obtain savings in input financing, labor, and better yields, so this research aims to identify holes in mulch based on Unmanned Aerial Vehicle images. The advantage of this research is that it can monitor each plant based on the mulch holes, and the number of holes identified can be used as a parameter to estimate the amount of crop production. This research combines Template Matching Algorithm and Machine Learning Algorithm to improve accuracy in predicting holes in mulch. Three machine learning algorithms are used, namely the Random Forest, Support Vector Machine, and XGBoost. The data used is an orthophoto mosaic from aerial photographs. Nine areas were taken from orthophotos to be used as research samples. The results of this study obtained the highest average recall, precision, and f-measure values using the Support Vector Machine algorithm with a recall value of 87.7%, precision of 97.5%, and fscore of 92.3%. This research focuses on reducing detected commission errors. Therefore, omission errors were still detected in the damaged or leaf-covered holes.


Availability

No copy data


Detail Information

Series Title
-
Call Number
-
Publisher Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI) : Indonesia.,
Collation
005
Language
English
ISBN/ISSN
2089-8673
Classification
NONE
Content Type
-
Media Type
-
Carrier Type
-
Edition
-
Subject(s)
Specific Detail Info
-
Statement of Responsibility

Other Information

Accreditation
-

Other version/related

No other version available


File Attachment



Information


Web Online Public Access Catalog - Use the search options to find documents quickly