Record Detail
Advanced Search
Text
MODIFICATION OF NON-LOCAL MEAN ALGORITHM USING PARALLEL CALCULATION FOR IMAGE NOISE REDUCTION
Noise in digital image processing is a noise that occurs at pixel values due to random colour intensity. Several types of noise models include Gaussian noise, speckle noise, impulse noise, and Poisson noise. Before processing image data, a noise reduction process is required. One of the noise reduction algorithms used for gaussian noise models is Non-local Mean. This algorithm performs calculations sequentially on each pixel in the search block. Due to a large number of pixels and search block area in the image, the noise reduction process using the Non-local Mean algorithm is very slow. This study proposes the concept of parallel calculations for the Non-local Mean algorithm. This concept divides the search block into three parts and performs calculations on each part simultaneously. The experimental results show that the Non-local Mean algorithm with parallel calculations can reduce noise up to 30% faster if the noise standard deviation is above 30.
Availability
No copy data
Detail Information
Series Title |
-
|
---|---|
Call Number |
-
|
Publisher | Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI) : Indonesia., 2023 |
Collation |
005
|
Language |
English
|
ISBN/ISSN |
2089-8673
|
Classification |
NONE
|
Content Type |
-
|
Media Type |
-
|
---|---|
Carrier Type |
-
|
Edition |
-
|
Subject(s) | |
Specific Detail Info |
-
|
Statement of Responsibility |
-
|
Other Information
Accreditation |
-
|
---|
Other version/related
No other version available
File Attachment
Information
Web Online Public Access Catalog - Use the search options to find documents quickly