Image of APPLICATION OF LUNG DISEASES DETECTION  BASED ON CSLNet

Text

APPLICATION OF LUNG DISEASES DETECTION BASED ON CSLNet



Lung diseases caused by fungal or bacterial infections can lead to inflammation in lung and even death when not detected early. A standard method for diagnosing lung diseases is the use of chest X-ray, which require careful examination of X-ray images by a radiology expert. Therefore, this study proposes several new architecture models, namely CSLNet, to classify chest X-ray images for diagnosing whether patients suffer from COVID-19, viral pneumonia, bacterial pneumonia, tuberculosis, and normal. The experimental results show that the model has an 0.99 average Accuracy, 0.98 Precision, 0.98 Recall, and 0.98 f1-score. Meanwhile, the Receiver Operating Characteristic (ROC) for bacterial pneumonia, COVID-19, normal, tuberculosis, and viral pneumonia are 0.97, 0.99, 0.99, 0.94, and 0.97 respectively. This study is based on a deep learning with a new model, CSLNet, which can work well on the dataset of chest X-ray images used for diagnosing lung diseases.


Availability

No copy data


Detail Information

Series Title
-
Call Number
-
Publisher Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI) : Indonesia.,
Collation
005
Language
English
ISBN/ISSN
2089-8673
Classification
NONE
Content Type
-
Media Type
-
Carrier Type
-
Edition
-
Subject(s)
Specific Detail Info
-
Statement of Responsibility

Other Information

Accreditation
-

Other version/related

No other version available


File Attachment



Information


Web Online Public Access Catalog - Use the search options to find documents quickly