Image of FOREST FIRE DETECTION USING TRANSFER LEARNING MODEL WITH CONTRAST ENHANCEMENT AND DATA AUGMENTATION

Text

FOREST FIRE DETECTION USING TRANSFER LEARNING MODEL WITH CONTRAST ENHANCEMENT AND DATA AUGMENTATION



Forest damage due to fire is unique of the catastrophes that can disrupt and damage the existing ecosystem. There needs to be a quick response to fires because disaster management takes longer, and the impact of the damage will be more severe. To process images to detect fire in the forest, we need to build a suitable deep-learning model. This study proposed research on forest fire detection using an Xception and MobileNet model. Moreover, this research optimizes the accuracy of the model by applying Contrast-Limited-Adaptive-Histogram-Equalization (CLAHE) and data augmentation to tackle the problem of the forest fire image dataset. Based on the experiment, MobileNet with CLAHE obtained 99,66% accuracy in the test phase. In the same phase, MobileNet with CLAHE obtained a value F1-score of 1.00, a value of precision of 0.99, and a value of recall of 1.00. If compared to other model performances, MobileNet with CLAHE obtained the best result.


Availability

No copy data


Detail Information

Series Title
-
Call Number
-
Publisher Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI) : Indonesia.,
Collation
005
Language
English
ISBN/ISSN
2089-8673
Classification
NONE
Content Type
-
Media Type
-
Carrier Type
-
Edition
-
Subject(s)
Specific Detail Info
-
Statement of Responsibility

Other Information

Accreditation
-

Other version/related

No other version available


File Attachment



Information


Web Online Public Access Catalog - Use the search options to find documents quickly