Record Detail
Advanced Search
Text
BANK CUSTOMER SEGMENTATION MODEL USING MACHINE LEARNING
Banks generally carry out marketing strategies by offering deposit products directly to customers. However, this method is less effective because it requires individualized communication without considering the customer's interest in the product offered. Therefore, this research aims to categorize the classification of bank customers into Yes and No. This research uses a dataset of bank deposits taken from KTM. This research uses a bank deposit dataset taken from Kaggle, the data consists of 11162 rows with 17 attributes. PCA technique was used for feature selection which was optimized by reducing the dimensionality of the dataset before modeling. It was found that the best model accuracy was SVM RBF kernel with C parameters achieving 80.51% accuracy and ANN 80.78%, but ANN showed a higher ROC graph than SVM because ANN performance results were faster than SVM. Thus, the overall performance measurement of ANN is much better.
Availability
No copy data
Detail Information
Series Title |
-
|
---|---|
Call Number |
-
|
Publisher | Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI) : Indonesia., 2023 |
Collation |
005
|
Language |
English
|
ISBN/ISSN |
2089-8673
|
Classification |
NONE
|
Content Type |
-
|
Media Type |
-
|
---|---|
Carrier Type |
-
|
Edition |
-
|
Subject(s) | |
Specific Detail Info |
-
|
Statement of Responsibility |
-
|
Other Information
Accreditation |
-
|
---|
Other version/related
No other version available
File Attachment
Information
Web Online Public Access Catalog - Use the search options to find documents quickly