Image of THE SIGNIFICANCE OF DYNAMIC COVID-19 DASHBOARD  IN FORMULATING SCHOOL REOPENING STRATEGIES

Text

THE SIGNIFICANCE OF DYNAMIC COVID-19 DASHBOARD IN FORMULATING SCHOOL REOPENING STRATEGIES



Experiments conducted with the COVID-19 dataset have predominantly concentrated on predicting cases fluctuating and classifying lung-related diseases. Nevertheless, the consequences of the COVID-19 pandemic have also spread to the education sector. To safeguard educational stability in response to the remote learning policy, we leverage authentic COVID-19 datasets alongside school information across 154 sub-areas in Surabaya City, Indonesia. Our focus is predicting the dynamic within these sub-areas where schools are located. The outcomes of this study, by incorporating the recurrent neural network of long- and short-term memory (RNN-LSTM) architecture and refined hyperparameters, effectively enhanced the predictive model's performance. The findings are showcased on a dashboard, visually representing the transmission of COVID-19 in schools across each sub-area. This information serves as a basis for informed decisions on the safe reopening of schools, aiming to mitigate the decline in education quality during the challenging pandemic.


Availability

No copy data


Detail Information

Series Title
-
Call Number
-
Publisher Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI) : Indonesia.,
Collation
005
Language
English
ISBN/ISSN
2089-8673
Classification
NONE
Content Type
-
Media Type
-
Carrier Type
-
Edition
-
Subject(s)
Specific Detail Info
-
Statement of Responsibility

Other Information

Accreditation
-

Other version/related

No other version available


File Attachment



Information


Web Online Public Access Catalog - Use the search options to find documents quickly