No image available for this title

Text

Music Recommender System using Autorec Method for Implicit Feedback



As the number of music and users in music streaming services increases, the role of music recommender systems is getting important to make it easier for users to find music that matches their tastes. The collaborative filtering paradigm is the most commonly used paradigm in developing recommender systems. Many studies have proven that deep learning is able to improve the performance of matrix factorization. One such method in deep learning that has been adapted for use in Recommender Systems is Autorec, which is a variation of the Autoencoder technique. Autorec shows that it performs better than the baseline matrix factorization using Movielens and Netflix datasets. Therefore, in this study we propose the use of Autorec to develop a recommender system for music. The experimental results show that Autorec performs better than Singular Value Decomposition (SVD), with an RMSE difference of 0.7.


Availability

No copy data


Detail Information

Series Title
-
Call Number
-
Publisher JURNAL MEDIA INFORMATIKA BUDIDARMA : Indonesia.,
Collation
006
Language
English
ISBN/ISSN
2614-5278
Classification
NONE
Content Type
-
Media Type
-
Carrier Type
-
Edition
-
Subject(s)
Specific Detail Info
-
Statement of Responsibility

Other Information

Accreditation
-

Other version/related

No other version available


File Attachment



Information


Web Online Public Access Catalog - Use the search options to find documents quickly