No image available for this title

Text

People Entity Recognition for the English Quran Translation using BERT



The Quran is a holy book for Muslims all over the world. Therefore, the Quran is not only translated into Indonesian but also into many other languages, including English. The contents of the Quran are a collection of thousands of verses, each verse having different topics and entities. Sometimes, someone may find it difficult to understand and study the contents of the Quran. Therefore, to make it easier, it is done by extracting information and identifying various entities in the Quran, such as human entities. An important thing to do in order to extract information on human entities is to extract information related to the human entity itself first. Because it can help in the search process, particularly the search for names of people in the Quran. The extraction of human entities is commonly known as Named Entity Recognition (NER). With NER, it can automatically recognize important entities such as people's names, group names, and other entities in a sentence or verse in the Quran. Currently, research on the Quran's English translation is not widely done. Therefore, in this research, we are building an information extraction system model for human entities based on a pre-trained deep learning model called Bidirectional Encoder Representations from Transformer (BERT). The dataset used is made up of 19473 tokens and 720 entities taken from the website tanzil.net. The development of the model shows that BERT can be used to extract information for NER on the Quran translation in English by obtaining a F1-score value of 53 %.


Availability

No copy data


Detail Information

Series Title
-
Call Number
-
Publisher JURNAL MEDIA INFORMATIKA BUDIDARMA : Indonesia.,
Collation
006
Language
English
ISBN/ISSN
2614-5278
Classification
NONE
Content Type
-
Media Type
-
Carrier Type
-
Edition
-
Subject(s)
Specific Detail Info
-
Statement of Responsibility

Other Information

Accreditation
-

Other version/related

No other version available


File Attachment



Information


Web Online Public Access Catalog - Use the search options to find documents quickly