Record Detail
Advanced Search
Text
Food and Beverage Recommendation in EatAja Application Using the Alternating Least Square Method Recommender System
EatAja is a startup in Indonesia that provides a mobile application-based food and beverage ordering solution for restaurants. The EatAja application uses transaction data to recommend food and beverage menus to customers. Previous studies have developed recommender systems using the Apriori and Collaborative Filtering methods. However, there are shortcomings in the recommendation system using both methods, i.e., the lack of personalization factors and low scalability. The learning method with matrix factorization can overcome the problem. In this study, we improve the food and beverage product recommender system in the EatAja application using the Alternating Least Square (ALS) matrix factorization method on Apache Spark. We will compare the results of the recommender system using the ALS method with the Collaborative Filtering method. The comparison uses the Mean Absolute Error (MAE) evaluation method. The results showed that the MAE value decreased by 0.07 with the ALS Matrix factorization method.
Availability
No copy data
Detail Information
Series Title |
-
|
---|---|
Call Number |
-
|
Publisher | JURNAL MEDIA INFORMATIKA BUDIDARMA : Indonesia., 2022 |
Collation |
005
|
Language |
English
|
ISBN/ISSN |
2614-5278
|
Classification |
NONE
|
Content Type |
-
|
Media Type |
-
|
---|---|
Carrier Type |
-
|
Edition |
-
|
Subject(s) | |
Specific Detail Info |
-
|
Statement of Responsibility |
-
|
Other Information
Accreditation |
-
|
---|
Other version/related
No other version available
File Attachment
Information
Web Online Public Access Catalog - Use the search options to find documents quickly